Abstract

Membrane fusion is one of the important processes for the survival of eukaryotic cells and the entry of enveloped viruses into the host cells. Lipid composition plays a crucial role by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. The diversity of the lipid acyl chain in its length and degree of unsaturation originates from the variation in free fatty acids (FFAs). We have studied the effect of linoleic (LA) and alpha-linolenic (ALA) acids on the depth-dependent organization, dynamics, and fusion of DOPC/DOPE (70/30 mol%) membranes utilizing steady-state and time-resolved fluorescence spectroscopic methods. Our results suggest that membranes with 5 mol% LA stabilize the stalk-intermediate and promote lipid mixing at the early stage of the process, i.e., the fusion follows the classical stalk model. Conversely, the extents of lipid and content mixing at the stalk intermediate are similar in the presence of 5 mol% of ALA, indicating the fusion mechanism as a nonclassical one like in the DOPC/DOPE (70/30 mol%) membranes. Our results provide an in-depth insight into the effect of the increasing degree of fatty acid tail unsaturation on membrane organization and dynamics and their impact on the membrane fusion mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.