Abstract
Liver mitochondria isolated from controls or polyunsaturated fatty acid (PUFA) deficient rats were studied for oxidative phosphorylation. A PUFA-deficient diet led to a dramatic change in the fatty acid composition of mitochondrial lipid content, similar to that reported in the literature. Besides the changes in lipid composition, mitochondrial volume was enlarged (+45% in state 4 and two-fold in state 3). State 4 respiration was increased together with a decrease in protonmotive force. The non-ohmicity of the relationship between non-phosphorylating respiration and protonmotive force was more pronounced in the PUFA-deficient group. State 3 oxygen consumption as well as the rate of ATP synthesis showed no difference between the two groups, whereas the protonmotive force decreased substantially in mitochondria from PUFA-deficient animals. In contrast, ATP/O ratios were decreased in the PUFA-deficient group when determined at subsaturating ADP concentration. Taken together, these results are in agreement with both an increased non-ohmic proton leak and an increased redox slipping. The relative importance of these two effects on the overall efficiency of oxidative phosphorylation depends on both the rate of oxidative phosphorylation and the maintained protonmotive force. Hence, in isolated mitochondria the respective role of each effect may vary between state 4 and state 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.