Abstract

HypothesisA concentration gradient of surfactants in the presence of polymers that non-covalently associate with surfactants will exhibit a continually varying distribution of complexes with different composition, charge, and size. Since diffusiophoresis of colloids suspended in a solute concentration gradient depends on the relaxation of the gradient and on the interactions between solutes and particles, polymer/surfactant complexation will alter the rate of diffusiophoresis driven by surfactant gradients relative to that observed in the same concentration gradient in the absence of polymers. ExperimentsA microfluidic device was used to measure diffusiophoresis of colloids suspended in solutions containing a gradient of sodium dodecylsulfate (SDS) in the presence or absence of a uniform concentration of Pluronic P123 poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) nonionic triblock copolymers. To interpret the effect of P123 on the rate of colloid diffusiophoresis, electrophoretic mobility and dynamic light scattering measurements of the colloid/solute systems were performed, and a numerical model was constructed to account for the effects of complexation on diffusiophoresis. FindingsPolymer/surfactant complexation in solute gradients significantly enhanced diffusiophoretic transport of colloids. Large P123/SDS complexes formed at low SDS concentrations yielded low collective solute diffusion coefficients that prolonged the existence of strong concentration gradients relative to those without P123 to drive diffusiophoresis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call