Abstract
The effect of polymer coil size on the rate of polystyrene (PS) hydrogenation was studied in a slurry reactor with mixtures of decahydronaphthalene (DHN) and carbon dioxide (CO2) as the solvent for the polymer. The PS coil size was changed by varying the polymer molecular weight from 9300 g/mol to 357 000 g/mol and by varying the CO2 concentration. Using a 5% Pd/5% Ru/SiO2 catalyst, the rate of aromatic ring hydrogenation at 150 °C was found to be strongly dependent on the size of a polymer coil relative to the average pore diameter of the catalyst. Significant pore diffusion limitations, as indicated by values of the Weisz modulus, were observed with increasing polymer molecular weight. Increasing the concentration of CO2 resulted in increased reaction rates, with an improvement of nearly 2 orders of magnitude at the highest PS molecular weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.