Abstract
Medical protective clothing should be flexible to ensure free movement of healthcare personnel. This study aimed to investigate the effects of a polymer’s physical properties on the particle composition of a shielding material, constituent component miscibility, and shielding performance. To ensure flexibility by reducing the thickness of the shielding garment, polymer-based composite materials are mainly used as shielding materials. The shielding performance varies depending on whether the polymer used is in an emulsion or powder state. In this study, we found that a shielding film manufactured through an injection process after mixing a polymer in a powder form with tungsten powder exhibited 0.95%–2.5% higher shielding performance than that manufactured using the calendering process with an emulsion polymer. The shell structure formed when using the powder polymer maintains the spacing between the particles owing to the double coating of the tungsten particles and improves their dispersion. Additionally, the primary issue when combining an emulsion polymer and shielding material, that is the aggregation between the shielding material particles and between the polymer particles, could be alleviated, resulting in improved shielding performance. We concluded that the polymer-powder mixing method contributes to the reproducibility of the process technology when manufacturing shielding films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.