Abstract

We study the process of a semiflexible polymer chain adsorption on to planar surface by the dynamic Monte Carlo (DMC) method, based on the 3D off-lattice model. Both the strength of attractive monomer–surface interaction (εa) and bending energy (b) have pronounced effect on the adsorption and shape of semiflexible polymer chain. The semiflexible polymer can just fully adsorb on to the surface at certain εa, which is defined as critical εa. The essential features of the semiflexible polymer adsorption on to surface are that (i) the critical εa increases with increase in b; (ii) the shape of the fully adsorbed semiflexible polymer chain is film-like toroid, and the toroid becomes more and more perfect with increase in b. In addition, the size of toroid and the number of turns of toroid can be controlled by the b and εa.

Highlights

  • The problem of polymer adsorption on to surfaces is relevant in many contexts, such as control of nanocrystal growth by adsorbed polymers, biomolecules interaction with cell surfaces, fabrication of special polymeric coatings at substrates and so on

  • The present study aims at systematically investigating the effect of chain stiffness and attractive polymer–surface interaction on the adsorption process

  • Our major objective is to study the conformation of semiflexible polymer that fully adsorbs on to planar surface

Read more

Summary

Introduction

The problem of polymer adsorption on to surfaces is relevant in many contexts, such as control of nanocrystal growth by adsorbed polymers, biomolecules interaction with cell surfaces, fabrication of special polymeric coatings at substrates and so on. The polymer in solution placed in contact with a surface can readily adsorb on to various surfaces if there exists an attractive interaction between segments of polymer and surface, and it can overcompensate for the conformational entropy loss associated with the adsorption [1]. Such an adsorption process may be governed by properties of the surface, the polymer or the solvent as well as the fine interplay among these. The conformational changes caused by the adsorption process can trigger drug delivery, enzymatic catalysis or cellular motion

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call