Abstract
The reduction of particle size to nanometers has been an important tool used for efficient drug delivery. Solid drug nanoparticles can be conveniently prepared by nanocomminution. This process relies on mechanical energy and the selection of a proper polymeric stabilizer. The long chains of polymers provide steric stabilization for drug nanoparticles. In this research, itraconazole and hydroxypropyl cellulose were used to study the effect of the molecular weight of a polymer on particle size reduction. In principle, an increase in molecular weight produces two counteracting effects: a decrease in the diffusion rate of chains and an increase in the physical adsorption of a polymer. The effects of particle size reduction are more pronounced in systems involving smaller molecular weights, and the effects of changing molecular weights disappear with time. Systems of higher molecular weight show larger aggregates in their redispersion after drying. Based on the results of our research, it appears that polymers of smaller molecular weight are more suitable than larger polymers for efficient nanocomminution. This indicates that the kinetic aspects of molecular weight are important.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.