Abstract

Excitation energy transfer between the dye pair acriflavine (donor) to rhodamine-6G (acceptor) in various polymers [polyvinyl alcohol (PVA), cellulose acetate, and polymethyl methacrylate (PMMA)] was studied using steady-state and time-resolved fluorescence spectroscopy at room temperature. In all these polymers, at higher acceptor concentrations, direct energy transfer from acriflavine to rhodamine-6G followed the Förster theory, which is indicated by the agreement in the values of the observed critical transfer distance with that calculated from spectral overlap. On the other hand, at low acceptor concentrations, the excitation energy migration influences the kinetics, resulting in a significantly higher value of the observed critical transfer distance, which is explained on the basis of Loring et al. (Loring, R. F.; Anderson, H. C.; Fayer, M. D. J. Chem. Phys. 1984, 80, 5731-5744) and Huber (Huber, D. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1979, 20 2307-2314) theories. It was observed that the spectral overlap for donor-donor transport (excitation migration) and donor-acceptor transfer (energy transfer) and thereby other energy transfer parameters were influenced by the microenvironment of the polymers. The efficiency of energy transfer (eta) was the highest in PMMA and the lowest in PVA. Further, the study of acceptor dynamics under energy transfer showed that the rise time of the acceptor also depends on the nature of the polymer microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.