Abstract

Influences of polymer-based grinding aid (PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity (E rd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy (SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence (XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20–100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.