Abstract

In this study, we synthesized two novel monofunctional acrylate monomers A0DA and A3DA featuring a benzene core and a dodecyl tail, and then investigated their effect on blue phase liquid crystal (BPLC) stabilization. The benzene core is directly linked to the acrylate unit in A0DA, which forms a rigid polymeric backbone. Whereas in A3DA,a propyl spacer is employed to separate the benzene unit from the acrylate group, thereby allowing backbone mobility. By using A0DA as a monofunctional monomer in the BPLC precursor composite, stabilization of BPLC was not seen upon photopolymerization. Interestingly, the use of A3DA showed successful stabilization of BPI lattice structure after polymerization. These results confirm that the origin of stabilization effect of blue phase is the flexibility of A3DA backbone employed; therefore, the polymeric backbone flexibility is suggested to have a major influence on BP stabilization process. Furthermore, we demonstrated a low voltage electro-optical switching of PS-BPLC built on A3DA, while preserving other desirable properties of BPLC. The present study provides useful insight into monomer designs towards BPLC stabilization and enhancement of electro-optical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.