Abstract

Folates are polyglutamylated in most organisms, and in cancer cells the polyglutamylation of folates and of the antifolate methotrexate (MTX) is an important determinant of MTX susceptibility. The folylpolyglutamate synthetase (FPGS) responsible for polyglutamylation of folates was recently characterized in the parasite Leishmania. We show here that MTX is polyglutamylated in Leishmania tarentolae and that triglutamates are the predominant form. The glutamate chain length of MTX increases significantly in Leishmania cells transfected with the FPGS gene and decreases in cells with one FPGS allele disrupted. Modulation in the expression of the FPGS gene also has a profound effect on MTX susceptibility and this effect was found to be dependent on the folate concentration of the medium. In the folate-rich medium SDM-79, overexpression of FPGS will confer MTX resistance while in M-199 medium, which has much less folates, FPGS transfectants are more sensitive to MTX. Cells with one allele of FPGS disrupted are more resistant to MTX in low folate medium. The modulation of FPGS expression affects both the short-term and long-term accumulation of folate and MTX, showing a marked decrease in accumulation in the FPGS haploid mutant. This differential accumulation was mediated by decreased influx of the drug into the cell. Finally, the analysis of MTX-resistant Leishmania mutants indicated that the presence of shorter glutamate chains on MTX is correlated with MTX resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.