Abstract
Abstract Polyethylene glycol (PEG) 2000 was used as a templating reagent to synthesize porous TiO2 thin film by sol–gel process. The nanopores resulting from the presence of growing cracks were ultimately formed on the surface when PEG content was higher than the critical value. Surprisingly, stable pore structure disappeared and surface became fluctuating and dehiscent after PEG amount increased to 0.02 M. Besides, two main hypotheses were proposed in order to explain this superhydrophilic behavior, namely the Wenzel and Cassie wetting impregnating models. Furthermore, the transition between these two wetting regimes was investigated and the criteria for the design and construction of Cassie impregnating wetting surface was also discussed. It was found that Cassie state shifting from Wenzel state could be easily achieved with increasing hole depth on TiO2 surface. The study of transition between Wenzel and Cassie impregnating wetting regimes on porous films provides valuable wetting mechanism of porosity-driven wettability for the design of superhydrophilic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.