Abstract

Flat sheet asymmetric membranes were fabricated with homogeneous solution of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) using N-methyl-2-pyrrolidone (NMP) as solvent via phase inversion method. PEGME (Poly ethylene glycol methyl ether) (Mn 5000) blend Humic Acid (HA), of different mole ratio was used as additive. Characterization of the membranes was done by Field emission scanning electron microscope (FESEM), Fourier Transform Infrared (FTIR) spectroscopy, Atomic force microscopy (AFM) and Differential scanning calorimetry (DSC) studies. Liquid-liquid displacement porosimetry (LLDP) study evaluated the morphological parameters, average pore size and pore size distribution. Bovine serum albumin (BSA) (MW - 68,000 Da) was used to study the antifouling effect and pore blocking mechanism of the membranes. The pure water flux (PWF), solute rejection and flux recovery ratio drastically increases for the PEGME blended HA membranes whereas the water contact angle decreases significantly. The pH responsiveness character of the prepared membranes altered the hydraulic permeability and rejection % at different pH. Finally, optimization of the variables contributing towards the PWF and BSA rejection of the desired membrane was performed using Design expert software 9.0 TRIAL through ANOVA (analysis of variance) using the combination of response surface methodology (RSM) and central composite design (CCD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call