Abstract

Here, we report the effect of polyethylene glycol (PEG6000)-induced molecular crowding (MC) on the catalytic activity and thermal stability of Kluyveromyces lactis β-galactosidase (β-Gal). The β-Gal-catalyzed hydrolysis of o-nitrophenyl-β-d-galactopyranoside followed a Michaelian kinetics at [PEG6000] ≤ 25% w/v and positive cooperativity at higher concentrations (35% w/v PEG6000). Compared with dilute solutions, in the MC media, β-Gal exhibited stronger thermal stability, as shown by the increase in the residual activity recovered after preincubation at high temperatures (e.g., 45 °C) and by the slower inactivation kinetics. Considering the effects of water thermodynamic activity on the reaction kinetics and protein structure and the effect of the exclusion volume on protein conformation, we suggest that changes in the protein oligomerization state and hydration could be the responsible for the behavior observed at the highest MC levels assayed. These results could be relevant and should be taken into account in industrial food processes applying β-Gal from K. lactis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.