Abstract

Polyaniline-chitosan (PANI-Cs) blends were prepared by in situ oxidative polymerization with acetic (CH3COOH) acid and hydrochloric (HCl) acid as dopants. Using Fourier transform infrared (FTIR) spectroscopy, the C N and C C stretching of quinoid and benzenoid of PANI in the PANI-Cs blends was confirmed at ranges 1528cm−1 to 1571cm−1 and 1490cm−1 to 1493cm−1, respectively. PANI emeraldine state was stipulated in all samples and PANI-Cs HCl samples have the highest degree of oxidation which is 48.56±0.23%. The ultraviolet-visible (UV–vis) spectroscopy identified the glucopyranose of Cs (282–308 nm), and π−π* transition of benzenoid (389–437 nm) and quinoid rings (551–554 nm) of PANI. The PANI-Cs blends yielded optical band gap values of 1.968±0.014 to 2.009±0.005 eV due to the presence of PANI. One-way ANOVA was also performed, and results showed the significant effect of using different dopants towards the degree of oxidation of the samples. Frequency dependent behavior was observed to the PANI-Cs samples with AC conductivity values around 1.2–4.1 Scm−1 at 105–107 Hz. The 102 Hz dielectric peak intensity of the samples varied due to influence of dopants on charge polarization. Lastly, PANI-Cs samples showed dominance of DC loss and relaxation at low frequencies 10–103 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.