Abstract

The main aim of this study was to synthesis of poly (lactic acid) (PLA)‐graft‐glycidyl methacrylate (GMA) as well as its influence on the properties of PLA/banana fiber biocomposites. PLA‐graft‐GMA graft copolymer (GC) was synthesized by melt blending PLA with GMA using benzoyl peroxide and dicumyl peroxide as initiators. Graft copolymerization was confirmed by FTIR and 1H‐NMR spectroscopic studies. PLA/silane treated banana fiber (SiB) biocomposites with various GC concentrations were prepared by melt blending followed by injection molding techniques. The influence of GC content on the mechanical, thermal and moisture resistance properties of the composite was investigated. The addition of 15 wt% GC content in the biocomposite provided optimum tensile and flexural strength, which is attributed to the greater compatibility between fiber and PLA matrix. The thermal properties of biocomposites have been evaluated using thermogravimetric analysis which provided evidence of improved interfacial adhesion between SiB and PLA by the addition of GC. Additionally, GC enhanced the moisture absorption resistance of biocomposites. These results indicated that GC is indeed a good candidate as a compatibilizing agent to improve the compatibility in PLA/fiber biocomposites. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call