Abstract

Mx proteins are induced by type I interferons (IFN α and β) in mice and humans and inhibit the replication of orthomyxoviruses and some other single-stranded RNA viruses. Recently, Mx genes have been cloned from Atlantic salmon. Mx transcripts were shown to be induced in head-kidney, liver and gills of the fish by the synthetic double-stranded RNA polyinosinic polycytidylic acid (poly I:C). In the present work we have studied expression of Mx protein in organs of Atlantic salmon treated with poly I:C. A quantitative immunoblot method was established to monitor expression of Mx protein and to compare relative amounts of Mx protein in different organs. Treatment of Atlantic salmon with poly I:C increased the relative amount of Mx protein in liver, stomach, hindgut, head-kidney and spleen. In gills the levels of Mx protein were similar in control fish and poly I:C treated fish. Immunohistochemistry of tissue sections from liver, head-kidney and gills from poly I:C treated fish was in accordance with the immunoblotting data and showed staining for Mx protein in several different cell types. Classification of infectious salmon anaemia virus as an orthomyxovirus makes it a putative target for Atlantic salmon Mx protein. Atlantic salmon treated with poly I:C showed reduced cumulative mortality compared to the control fish when challenged with infectious salmon anaemia virus (ISAV) by intraperitoneal injection. This demonstrates that poly I:C has some protective effect against ISAV in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.