Abstract

We investigate the effect of short-chain poly(ethylene glycol) (PEG) graft density on the formation of methylcellulose (MC) fibrils at elevated temperatures. Thiol–ene click chemistry was used to systematically graft 800 and 2000 g/mol PEG onto the backbone of allylated MC, with a wide range of grafting densities from 0.7% to 33%. As determined from light scattering, grafting leads to an increase in the persistence length of this semiflexible copolymer, by as much as a factor of 10. Upon heating, SAXS and AFM studies show that fibril formation is suppressed at around 10% grafting density for shorter PEG grafts, corresponding to persistence lengths about ∼22 nm. For longer grafts fibril formation is suppressed at 7% grafting density, at around the same ∼22 nm persistence length. The radius of the fibrils increases with the square root of the persistence length of the chains, which is consistent with a theory for the radius of twisted chains. The ability to form networks at 80 °C is highly correlated to the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.