Abstract

Farmlands around the Hg mining areas have suffered from severe Hg contamination issues, triggering a phenomenon of high Hg content in crops, and subsequently threatening human health. In this study, ramie (Boehmeria nivea L.) assisted with poly-γ-glutamic acid (γ-PGA) was employed to remediate the Hg-contaminated soil through incubation experiments. After the soil was amended with γ-PGA, the leaf Hg content increased by 4.4-fold, and the translocation factor value even reached 3.5, indicating that γ-PGA could dramatically enhance the translocation of Hg from root and stem to leaf. γ-PGA could induce the transformation of potentially available Hg to available fractions, resulting in the soil Hg being more bioavailable. Batch trials verified that γ-PGA could mask the adsorption function of Hg ions by soil organic matter, significantly stimulating the desorption of Hg ions from the soil. As a result, the soil Hg would transfer to the aqueous phase and be assimilated by the root of ramie more easily and effectively. The γ-PGA chelated Hg is hydrophilic and has a high affinity with –SH and -S-; thereby, it can easily stride over the Casparian strip, enter the vessel, be translocated upwards, be sequestered in the tissues of leaf, and be incorporated irreversibly. This study can provide a new method for the remediation of Hg-contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call