Abstract

The optical properties of blue-violet InGaN light-emitting diodes under normal and reversed polarizations are numerically studied. The best light-emitting performance under normal and reversed polarization is obtained in a single quantum-well structure and double quantum-well structure, respectively. The key factors responsible for these phenomena are presumably the carrier concentration distribution and the amount of carriers in quantum wells. The turn-on voltage of light-emitting diodes under reversed polarization is lower than that of light-emitting diodes under normal polarization, due mainly to lower potential heights for electrons and holes in the active region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.