Abstract

The use of nanoscale zinc oxide (n-ZnO) in the personal care products would cause interactions between n-ZnO and human sweat. Facet engineering has been applied to n-ZnO to improve its activity. Nevertheless, it is not clear whether the exposed facet would affect transformation of n-ZnO in sweat. Herein, we prepared ZnO nanoneedles with the dominant (1010) non-polar facet (i.e., ZnO-1010) and ZnO nanoflakes with the dominant (0001) polar facet (i.e., ZnO-0001), respectively. We found that n-ZnO can undergo chemical transformation in the simulated sweat within 168 h or 24 h, transforming into amorphous materials and Zn3(PO4)20.4 H2O and/or Na(ZnPO4)·H2O. Given the rate constant (e.g., 0.093 h−1 for ZnO-0001 vs. 0.033 h−1 for ZnO-1010) of ZnO depletion and components of the precipitate from the simulated sweat, nevertheless, the transformation is highly dependent on the dominant exposed facet of n-ZnO. The ZnO-0001 relative to ZnO-1010 would likely undergo chemical transformation, demonstrating that the (0001) polar facet compared to (1010) non-polar facet had a superior activity to the dihydrogen phosphate anions in the simulated sweat, which is supported by density functional theory calculations. The chemical transformation can affect the antibacterial activity of n-ZnO to E. coli, moderating the toxicity due to a great decrease in the concentration of the dissolved zinc. In total, our findings provided insights into the facet-dependent transformation for n-ZnO in the simulated sweat, improving our understanding of potential risk of n-ZnO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call