Abstract

In this report, we demonstrate the effect of the polar non-linear chromophore and other polar additives on hole mobilities in photorefractive polymer systems. The hole mobility measurements are presented as a function of applied field and temperature in two model systems. The nonlinear optical chromophore 4' nitro-4'-aminostilbene (NAS), having a large dipole moment of 6.7 Debye, is doped or covalently attached into a polymer matrix containing 30% by weight of diethylamino-benzaldehyde diphenyl hydrazone (DEH), a hole transport agent. The results are described by the Gaussian disorder model based on hopping through a manifold of states with superimposed energetic and positional disorder. We conclude from the results that the main effect produced by the polar additives is the reduced mobility, in agreement with the dipolar disorder model. The dipolar chromophores required in photorefractive polymers significantly decrease carrier mobility and also the speed of response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.