Abstract

Particulate matter smaller than 2.5μm (PM2.5) is a continuing challenge to pulmonary health. Here, we investigated the mechanisms involved in PM2.5 exposure-induced acute lung injury in rats. We analyzed biochemical and morphological changes following a 2-week "real-world" exposure. And then we found that PM2.5 exposure increased the concentrations of total protein, malondialdehyde, hydrogen peroxide, nitric oxide, and soluble elastin in bronchoalveolar lavage fluid, levels of cytokines in blood, and expression of MMP-9 in airways. Further, alveolar macrophage and neutrophil counts increased following PM2.5 exposure, and edema and lung lesions were observed. Our results suggest that PM2.5 exposure can induce oxidative stress and acute inflammatory responses, which can damage the micro-environment and decrease the repair ability of the lung, resulting in tissue damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.