Abstract

The solubilization of hydrophobic porphyrin photosensitizers (PPSes) to obtain corresponding water-soluble forms is an important line of modern antimicrobial photodynamic therapy. It is shown that a triblock copolymer of ethylene and propylene oxides, Pluronic F-127, one of the most nontoxic and effective polymer surface active substances (SASes), can be used for the conversion of hydrophobic tetraphenylporphyrin (TPP) and monosubstituted and tetrasubstituted hydroxy, amino, and nitro TPPs into water-soluble forms. It is found that Pluronic has a substantially higher solubilizing affinity (defined as the minimum molar concentration of an SAS required for the complete migration of porphyrin with a specific molar concentration to the aqueous phase) toward monosubstituted TPPs than to corresponding tetrasubstituted porphyrins. It is shown that with Pluronic in the organic phase, the activity of tetraphenylporphyrin in a test reaction of the oxidation of anthracene is higher than that of its monosubstituted and tetrasubstituted derivatives. In an aqueous medium, the activity of solubilized mono derivatives of TPP is comparable to that of unsubstituted TPP and is higher than the activity of the corresponding tetra derivatives of TPP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.