Abstract
In this study, we fabricate a counter electrode by coating a Pt ribbon onto a fluorine-doped tin oxide glass substrate with a Pt layer. The Pt ribbon gives rise to a protrusive structure of the counter electrode, produced by photolithography, sputtering and lift-off processes. The experimental results reveal that the photoelectric efficiency of the dye-sensitized solar cell (DSSC) with the Pt ribbon (5.32%) is 21% higher than that of the DSSC without a Pt ribbon (4.38%). This infers that Pt ribbons can increase the photoelectric efficiencies of DSSCs. The DSSC with the Pt ribbon has a large photoelectric efficiency of 5.32%, not only because the protrusive structure has specific channels for directional electron transport, but also because of its large surface area. The method that is proposed herein has the advantages of a low production cost and easy fabrication that can be applied to various electrode structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.