Abstract

Properties of a novel catalytic material, Pt/N-graphene, in gas-phase decomposition of formic acid to obtain pure hydrogen were studied. The graphene powder doped with nitrogen atoms was used as the carbon support. The following methods were used to characterize the synthesized catalysts: X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), EXAFS and CO chemisorption. It was determined that the platinum precursor substantially affects the state of the metal in the Pt/N-graphene catalysts. When Pt(NO3)4 was used as the precursor, platinum on the catalyst surface was in the form of nanocrystals. Meanwhile, the use of H2PtCl6 led to the formation of atomically dispersed platinum stabilized on the surface of N-graphene. Carbon structures containing defects in the graphene layer surrounded by four nitrogen atoms had strong interactions with platinum atoms and acted as the sites where atomic platinum was stabilized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call