Abstract

AbstractThe aerodynamic performance of offshore floating wind turbines (OFWTs) is more complicated than onshore wind turbines due to 6‐degree of freedom (DOF) motion of the floating platform. In the current study, the aerodynamic analysis of a horizontal‐axis floating offshore wind turbine is performed with the aim of studying the effects of floating platform movement on the aerodynamic characteristics of the turbine in the presence of a pitch angle control system. The National Renewable Energy Laboratory (NREL) 5‐MW offshore wind turbine is selected as the baseline wind turbine. For this sake, the unsteady blade element momentum method with dynamic stall and dynamic inflow models have been employed to obtain the unsteady aerodynamic loads. The baseline pitch angle control system is assumed to be coupled with the aerodynamic model to maintain the rated condition of the wind turbine and also to approach a closer model of wind turbine. In case of pitching motion input, the reduction of mean power coefficient for tip speed ratios (TSRs) less that 7 is expected by an amount of 16% to 20% at pitch amplitude of 2° and frequency of 0.1 Hz. For high TSRs, the trend is reverse with respect to fixed‐platform case. The mean thrust coefficient is reduced for almost all range of TSRs with maximum loss of 37%. Moreover, the mean control pitch angle that is an index of control system effort is increased. The results also represent the importance of considering the pitch control system for aerodynamic analysis of disturbed OFWT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call