Abstract

IntroductionPlatelet-rich fibrin (PRF), as an autologous fibrin matrix, is known to contain platelets, leukocytes, and growth factors to control inflammation and to facilitate the healing process. The purpose of this study was to investigate the effects of PRF on odontoblastic differentiation in human dental pulp cells (HDPCs) treated with lipopolysaccharide (LPS). MethodsGene expression of inflammatory cytokines and adhesion molecules on the HDPCs cultured with or without LPS and PRF extract (PRFe) were evaluated by reverse-transcription polymerase chain reaction and Western blot analysis. In addition, odontoblastic differentiation was determined by measuring alkaline phosphatase (ALP) activity using ALP staining, the expression of odontogenesis-related genes, and the extent of mineralization using alizarin red S staining. ResultsTreatment with PRFe significantly attenuated the LPS-stimulated expression of interleukin (IL)-1β, IL-6, and IL-8 in HDPCs. In addition, PRFe inhibited the up-regulation of vascular cell adhesion molecule 1 and the production of intracellular adhesion molecule 1 in HDPCs exposed to LPS. Expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1, ALP activity, and mineralization were enhanced by PRFe in LPS-treated HDPCs. ConclusionsThese results suggest that PRF has effects associated not only with inhibition of inflammation in HDPCs exposed to LPS but also stimulation of odontoblastic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.