Abstract
Adding small molecular plasticizers is the most common route to tailor the stretchability of poly(vinyl alcohol) (PVA). However, how the plasticization along with the nature of the plasticizer governs the structural homogeneity during stretching remains an open question to answer. Herein, two representative plasticizers, glycerol (GLY) and water, are chosen to endow the PVA films with ductility. It is found that large strain cavitations cause obvious stress whitening in the PVA/H2 O films; on the contrary, most of the PVA/GLY films maintain transparent undergoing tensile deformation. Through a combination of experimental inspections and molecular dynamic simulation, it is revealed that partial water molecules that behave as free water will aggregate into microdomains, which serve as mechanical defects responsible for yielding voids. Whereas, the GLY plasticizer homogeneously disperses at a molecular level and interacts with PVA chains through strong hydrogen bonds. More interestingly, it is illustrated that the dispersion and bound states of plasticizers are closely related to the mechanical character of the plasticized PVA films. These findings offer new insight into the working mechanism of plasticization on the structural stability during stretching, and guide the design of PVA/plasticizer system to obtain excellent comprehensive mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.