Abstract

Plastic mulch is widely utilized for weed control, temperature regulation, soil erosion prevention, disease management, and soil structure improvement, ultimately enhancing crop quality and yield. However, a significant issue with conventional plastic mulches is their low recycling rates, which can cause plastic residue to build up, thereby damaging soil quality and reducing crop yield. The emergence of biodegradable films offers a promising solution to mitigate this issue and reduce soil pollution. However, its potential effects on soil properties and plant performance remain unclear. In this study, low-density polyethylene (LDPE) and poly (butylene succinate-co-butylene adipate) (PBSA) were used to observe the effect of plastic mulch residues on soil properties and plant growth performance via potting experiment. Additionally, the interaction effects of compost and biochar as soil amendments with plastic mulch residues were also evaluated. The result of this study revealed that the type of plastic significantly affected the total nitrogen and magnesium uptake; however, the morphological traits of the tested plant (Japanese mustard spinach) were not significantly affected. The addition of compost and biochar led to a significant increase in both shoot and total dry weight of the plant, indicating a positive effect on its growth. The results of the two-way ANOVA indicated a significant influence of plastic type on dissolved phosphate (PO43−) levels and soil dehydrogenase activity (DHA). The interaction effect (plastic type with soil amendment) was statistically significant only for soil DHA. Neither plastic mulch residues nor soil amendments significantly affected other soil chemical properties. However, long-term experiments to systematically investigate the long-term effects of plastic residues are necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.