Abstract
The strain hardening behavior of Al–TiN nanolayered composites induced by plastic incompatibility was studied by 3-D discrete dislocation dynamics (DDD) simulations. Our simulations results indicate the strain hardening rate solely induced by the plastic incompatibility is independent of layer thickness and dislocation density at a constant layer thickness ratio, while the yield stress exhibits a strong size effect. Furthermore, the strain hardening rate increases with decreasing Al/TiN layer thickness ratio and our predicted results match well with prior experiment data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.