Abstract

Discrete dislocation (DD) plasticity simulations are carried out to investigate the effect of flattening and shearing of surface asperities. The asperities are chosen to have a rectangular shape to keep the contact area constant. Plasticity is simulated by nucleation, motion, and annihilation of edge dislocations. The results show that plastic flattening of large asperities facilitates subsequent plastic shearing, since it provides dislocations available to glide at lower shear stress than the nucleation strength. The effect of plastic flattening disappears for small asperities, which are harder to be sheared than the large ones, independently of preloading. An effect of asperity spacing is observed with closely spaced asperities being easier to plastically shear than isolated asperities. This effect fades when asperities are very protruding, and therefore plasticity is confined inside the asperities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.