Abstract

Friction stir welding (FSW) of high strength materials is challenging due to high tool cost and low tool life. To address this issue, the present investigation deals with an alternative of plasma-assisted friction stir welding (PFSW) of DH36 steel with WC-10%Co tool. Plasma preheating current (13 A, 15 A, and 17 A) was varied by keeping other FSW parameters as constant. During the FSW and PFSW process, force measurement and thermal history aided in a deep understanding of the process, tool degradation mechanisms, accompanied by the mechanical and microstructural characterization of the welded joints. The stir zone hardness was increased from 140 HV0.5 to about 267 HV0.5. The yield and tensile strength of weld increased from 385 MPa and 514 MPa to about 391 MPa and 539 MPa, respectively. Weld joint elongation (%) was increased from ~10% of weld 1 to ~13.89% of weld 4. During PFSW, the process temperature was increased, the cooling rate was lowered, and the weld bead was widened. The results also revealed that the plasma-assisted weld resulted in polygonal ([Formula: see text]) and allotriomorphic ferrite as the major constituents in the stir zone. Pearlite dissolution and spheroidization were observed in the ICHAZ and SCHAZ, respectively. Additionally, the plasma preheating reduced the tungsten tool’s wear by 58% compared to FSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call