Abstract

The effect of equilibrium plasma motion on the resistive m/n = 2/1 tearing mode (TM) in low β plasmas is investigated in cylindrical geometry (with m and n being poloidal and toroidal mode numbers). Without equilibrium plasma motion but with viscosity, the TM stability is mainly determined by the Reynolds number S and reaches maximum near S = 104, which is consistent with previous findings. The poloidal plasma rotation has stabilizing effect on TM; however, the rotation shear has destabilization effect in the low viscosity regime. The axial plasma motion has strong stabilizing effect on TM in the low viscosity regime for Prandtl number Pr < 1, while its shear has slight stabilizing effect with the decrease of growth rate less than 15%. When the axial velocity becomes large enough, the mode frequency tends to be independent of the Prandtl number. In the presence of parallel plasma motion, the growth rate is determined by the axial component at low parallel velocity, while determined by poloidal component at large parallel velocity. The parallel plasma motion drives the TM rotating in the opposite direction. It is shown that the equilibrium motion reduces the growth rate of TM by changing the phase difference and coupling coefficient between potential perturbation and magnetic flux perturbation (deviating from π/2), which results in a lower mode frequency. Compared to the role of velocity shear, the magnitude of plasma velocity itself at the m/n = 2/1 rational surface is dominant in determining the TM characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call