Abstract
The effect on the selection of different plasma chemistries for simulating a typical dielectric barrier discharge (DBD) driven by quasi-pulsed power source (20 kHz) is investigated. The numerical simulation was performed by using the one-dimensional self-consistent fluid modeling solver. Our simulation result indicates that the computed temporal current density can be significantly improved by using a complex version of plasma chemistry module rather than the simple one and demonstrates an excellent agreement with the experimental data. The result suggests the metastable, excited and ionic helium related reaction channels, which are important in simulating a DBD, should be taken into account. Furthermore, it also reveals that the power absorption of ions is considerably higher than that of the electron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.