Abstract

In recent years, microbial decontamination with plasma-activated water (PAW) has attracted a lot of research attention in the field of food industry. Despite several studies showing that PAW effectively inactivates planktonic bacteria, few studies have been conducted on biofilms. The present study was, therefore, designed to evaluate the effect of PAW on the biofilm formation characteristics of Salmonella Enteritidis. Comparing the expression patterns of biofilm-related genes in PAW-treated and non-treated planktonic and biofilm cells provided insight into how PAW regulates this process. The results showed that a 30-minute exposure to PAW at room temperature significantly reduced S. enteritidis planktonic cells. This exposure resulted in a decreased expression of the genes involved in the early stages of biofilm formation (csgD, agfA, fimA, lpfE, and rpoS), and an increased expression of the csrA gene in S. enteritidis planktonic cells. These results indicated the inhibitory effect of PAW on the biofilm formation process in S. enteritidis. Results of the initial attachment assay confirmed these findings, where, after 6 h, the number of PAW-treated cells attached to the stainless steel surfaces were significantly lower than non-treated ones. Furthermore, biofilm development assay revealed that the number of PAW-treated biofilm cells were significantly lower than non-treated ones after 24 h incubation at 37 °C. These findings were confirmed by measurements of the major components of biofilm i.e., extracellular DNA (eDNA), protein and carbohydrate. The amount of these components in 24-hour biofilms produced by PAW-treated S. enteritidis cells was significantly lower than that of non-treated cells. PAW's treatment on preformed 24-hour biofilms for 30 min led to a decrease in the expression of genes involved in quorum sensing and cellulose synthesis (csgD, bapA, adrA, luxS and sdiA) and an increase in the expression of the csrA gene. This treatment also reduced the number and metabolic activity of biofilm cells compared to non-treated biofilm cells. In total, the present study demonstrated that PAW has an inhibitory effect on the process of biofilm formation in S. enteritidis and hence, the food industry should pay special attention to PAW as a promising treatment to eliminate bacterial biofilms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call