Abstract

The medical applications of nonequilibrium atmospheric pressure plasma in cancer therapy have attracted attention. We previously reported on the antitumor effect of plasma-activated medium. However, this approach requires plasma-activated liquids that are administrable to the human body. In this study, we produced plasma-activated lactated Ringer's solution (PAL) and evaluated its antitumor effect and mechanism. Furthermore, we evaluated the effect of the intraperitoneal administration of PAL using a peritoneal dissemination mouse tumor model. The antitumor effect of PAL on pancreatic cancer cell lines was evaluated using proliferation and apoptosis assays. In addition, cellular reactive oxygen species (ROS) generation was examined. The role of ROS was assessed using a proliferation assay with N-acetyl cysteine (NAC). An adhesion assay was performed to evaluate the effect of PAL on cell adhesion. Finally, pancreatic cancer cells stably expressing luciferase (AsPC-1/CMV-Luc) were injected intraperitoneally into mice, followed by intraperitoneal injection of PAL. Peritoneal dissemination was monitored using in vivo bioluminescent imaging. The antitumor effect of PAL was shown in all cell lines in vitro. The TUNEL assay showed that PAL induced apoptosis. ROS uptake was observed in PAL-treated cells, and the antitumor effect was inhibited by NAC. Cell adhesion also was suppressed by PAL. The intraperitoneal administration of PAL suppressed the formation of peritoneal nodules in vivo. Our study demonstrated the antitumor effects of PAL in vitro and in vivo. Intraperitoneal administration of PAL may be a novel therapeutic option for peritoneal metastases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call