Abstract

Aquatic macrophytes debris decomposition could release pollutants and nutrients into the water of constructed wetlands (CWs), but their role in nitrogen removal and transformation remains poorly understood. The present study investigated the effects of plant-self debris on nitrogen removal and microbial communities in mesocosm CWs planted with Myriophyllum aquaticum. During the 68-day operation, the plant debris addition did not change the mean removal efficiency of ammonium (NH4+-N) and total nitrogen (TN) of CWs but showed significant differences over the operation time. The NH4+-N and organic nitrogen released from the plant debris decomposition affected the nitrogen removal. The plant debris decreased the effluent nitrate concentration and N2O emission fluxes of the CWs with the increased abundance of denitrifying bacterial genera, indicating that plant debris decomposition increased the denitrification activities via dissolved organic carbon release. High-throughput sequencing indicated that the plant debris altered the distribution and composition of the microbial community in the sediments. Proteobacteria was the dominant phylum (28–52%), and the relative abundance of denitrifying bacteria genera was significantly higher in the sediments with debris addition (37–40%) than in the non-addition (6.6–7.7%). The present study provided new insights into the role of macrophytes in pollutant removal and the plant management strategy of CWs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.