Abstract

Resistance to snow molds in winter wheat increases with plant age, and older plants express higher levels of resistance than young plants. Experiments were conducted to study the effect of plant age on percent crown water content (%CWC) and dry weights in fall rye and winter wheat cultivars grown under controlled environments and in the field at Lethbridge, AB. Under controlled environments, the oldest (6 wk of pre-hardening growth at 20°C) treatments accumulated the greatest dry weights following exposure of plants to 1 to 6 wk hardening conditions at 2°C, compared with younger (1 to 4 wk pre-hardening growth) treatments. Exposure of plants to hardening temperatures had the greatest effect on %CWC values, which decreased, gradually, from 82–89% (4.95–8.67 g H2O g–1 DW) in unhardened treatments to 67–72% (2.05–2.65 g H2O g–1 DW) in plants receiving the 6 wk pre-hardening and 6 wk hardening growth. However, the oldest treatments (4 to 6 wk pre-hardening growth) always exhibited the lowest %CWC values among all hardening treatments. The %CWC in the oldest (6 wk) unhardened plants was also lower ([Formula: see text] = 80.8% or 4.24 g H2O g–1 DW) than in the youngest (1wk) unhardened plants ([Formula: see text] = 91.2% or 11.31 g H2O g–1 DW ), demonstrating that water loss occurs in older plants in the absence of low hardening temperatures. In a field study at Lethbridge during the autumn, winter, and early spring of 1997–1998 and 1998–1999, different seeding dates were employed to obtain plants differing in age and developmental state. The %CWC in early-seeded treatments was lower during the autumn, and remained lower in early spring, compared with later seeded cultivars. The %CWC in crowns was negatively associated with the snow mold resistance rating of a fall rye and five winter wheat cultivars under controlled environment conditions, and among a fall rye and 13 winter wheat cultivars in the field; the highest correlation values in the field were observed from mid-November to mid-March during 1997–1998 (r = –0.84), and 1998–1999 (r = – 0.76). These results indicate that the type of snow mold resistance that increases with plant age is related to the accumulation of crown dry matter and the ability of wheat and rye plants to lose crown water in response to both extended growth at warm temperatures and hardening at low, above freezing temperatures. Key words: Carbohydrates, fructans, low temperature basidiomycete, Coprinus psychromorbidus

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.