Abstract

In this paper, we use computational modeling to explore the effects of placing a probe within the active volume of an acoustic levitator. A two-step computational approach is used to visualize the levitation nodes using thousands of simulated particles driven by the acoustophoretic force and gravity. Our analysis shows that the size and position of a probe can strongly alter the shape, location, and intensity of existing levitation nodes. This has a direct impact on the ability to use acoustic levitation for drop suspension in the presence of disruptive probes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call