Abstract

Numerical simulation of the in-cylinder flow for internal combustion (IC) engine with different bowl shapes has been performed. The LES models are applied to a piston-cylinder assembly with a stationary valve and a harmonically moving piston. Gas motion inside the engine cylinder determines the thermal efficiency of an IC engine, and combustion chamber geometry affects the performance of the IC engine. Comparison of the flow characteristics inside the engine cylinder equipped with different piston geometries shows that the squish flow affects the turbulence generation process near the top dead center during compression stroke. The A-type combustion chamber with reentrant shape is shown to have higher radial velocity and turbulence intensity in the piston bowl compared with other types. Results of these simulations aid in the improved understanding of the effect of intake and compression process of piston geometry on the in-cylinder flow. The detailed flow characteristics inside the in-cylinder for different piston bowl shapes can offer basic guidelines to improve the combustion process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call