Abstract

To improve the existing thermal models of the human head, we incorporate the effect of the temperature over the metabolic heat generation, the regulatory processes that control the cerebral blood perfusion and their dependence on physiological parameters like, the mean arterial blood pressure, the partial pressure of oxygen, the partial pressure of carbon dioxide, and the cerebral metabolic rate of oxygen consumption. The introduction of these parameters in a thermal model gives information about how specific conditions, such as brain edema, hypoxia, hypercapnia, or hypotension, affect the temperature distribution within the brain. Our work, on a layered head model, shows that variations of the physiological parameters have profound effect on the temperature gradients within the head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.