Abstract

PurposePrimary human corneal endothelial cells (HCEnCs) cultured in room air are exposed to significantly higher O2 concentrations [O2] than what is normally present in the eye. We evaluated the growth and metabolism of HCEnCs cultured under physiological [O2] (2.5%; [O2]2.5) and room air ([O2]A).MethodsPrimary cultures of HCEnCs from normal donors and donors with Fuchs dystrophy were grown at [O2]2.5 and [O2]A. Growth and morphology were compared using phase-contrast microscopy, zonula occludens (ZO-1) localization, cell density measurements, and senescence marker staining. CD44 (cell quality) and HIF-1α (hypoxia-inducible factor-1α) levels were evaluated by Western blotting. Cell adaptability to a reversal of [O2] growth conditions was measured with cell viability assays, and cell metabolism was assessed via oxygen consumption and extracellular acidification rates.ResultsHCEnCs grown at [O2]A and [O2]2.5 displayed similar morphologies, ZO-1 localization, CD44 expression, and senescence. Cells from donors with Fuchs dystrophy grew better at [O2]2.5 than at [O2]A. HIF-1α was undetectable. Cells displayed greater viability at [O2]2.5 than at [O2]A. HCEnCs showed significantly greater proton leak (P < 0.01), nonmitochondrial oxygen consumption (P < 0.01), and spare capacity (P < 0.05) for oxygen consumption rates, and greater basal glycolysis (P < 0.05) with a decreased glycolytic reserve capacity (P < 0.05) for extracellular acidification rates.ConclusionsPrimary HCEnCs show unique metabolic characteristics at physiologic [O2]. The effect of [O2] for optimization of HCEnC culture conditions should be considered.Translational RelevanceWith the advance of cell-based therapeutics for corneal endothelial diseases, [O2] should be considered an important variable in the optimization of HCEnC culture conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call