Abstract

Coal gasification, recognized as one of the most effective coal utilization technologies, will produce a certain amount of fine ash during the high-temperature reaction process. The wettability of gasification fine ash is a critical parameter to characterize the degree of high-temperature reaction and determine the separation efficiency of purification process. In the present work, the effect of physicochemical properties on the wetting behavior of different gasification fine ash is studied. The difference in wettability between particle size and types can be explained by the unique properties of particles (i.e. pore structure, mineral composition, and chemical structure). The results show that with the decrease in particle size, the surface morphology transforms from an irregular shape with a rough surface to a spherical shape with a smooth surface. The pore structure, characterized by fractal surface dimension Ds, presents positive correlations with the contact angle for a single type of fine ash. The mineral composition can just qualitatively assess the hydrophilicity of particles. Only the ratio of hydrophilic chemical structure can be used as a generic parameter to describe the wetting performance. Meanwhile, the wettability of hydrophilic particles can be enhanced by increasing moisture content, but there is no significant effect of moisture content on the wettability of hydrophobic particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call