Abstract

Straw lignocelluloses were converted to reducing sugar for possible use for bioenergy production via physicochemical pretreatments and enzymatic hydrolysis. The experiment was divided into 2 steps. The first step focused on breaking the crystal structure and removing lignin in corn straw. The lignin, hemicellulose, and cellulose degradation rates observed were 92.2%, 73.7%, and 4.6%, respectively, after corn straw was treated with sodium hydroxide (3% w/w) plus high-pressure steam (autoclave), 74.8%, 72.5%, and 4.3% after corn straw was treated with sodium hydroxide (8%, w/w) plus wet steam explosion, compared with native corn straw (P < 0.05). The second step was enzymatic hydrolysis for the pretreated straw. The enzymatic hydrolysis could yield 576 mg/g reducing sugar and significantly degrade cellulose and hemicellulose contents by 93.3% and 94.4% for the corn straw pretreated with sodium hydroxide plus high-pressure steam. For the corn straw pretreated with sodium hydroxide plus wet steam explosion, the enzymatic hydrolysis could yield 508 mg/g reducing sugar, and degrade cellulose and hemicellulose contents by 83.5% and 84.2%, respectively, compared with the untreated corn straw (P<0.05). Scanning electron microscopy showed that the physicochemical pretreatments plus enzymatic hydrolysis degraded corn straw to many small molecules. Thus, physicochemical pretreatments plus enzymatic hydrolysis converted lignocellulose to reducing sugar effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.