Abstract

BackgroundKaolin is white clay mineral with the chemical composition Al2Si2O5(OH)4, and many varieties of kaolins having different crystal structures are utilized in industrial, cosmetic and medical fields. To evaluate the effect of physicochemical character differences on the genotoxicity of kaolin, two types of kaolin, kaolin-S with smooth, sphere-shaped crystals, and kaolin-P with clusters of thin pseudohexagonal plates, were used in the study.ResultsICR mice were intratracheally instilled with the kaolins (0.05 and 0.2 mg/mouse), and comet assay was performed on their lungs. Both kaolins showed DNA damage in the lungs of the mice, however the DNA damaging potency was much higher with kaolin-P than that with kaolin-S.In order to clarify the mechanisms for the different genotoxic potency, we examined the incorporation rate and ROS generation of these two types of kaolin in alveolar epithelial A549 and macrophage-like RAW264 cells, using flow cytometric (FCM) analysis. Kaolin-P showed a higher incorporation rate into the mammalian cells and ROS generation than that of kaolin-S. Especially, RAW264 cells aggressively incorporated kaolins, and generated ROS, whereas almost no ROS generation was observed in A549 cells. In addition, inflammatory cytokines were quantified, using the ELISA method, to understand further genotoxic potency differences of kaolins. Concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the media were increased by exposure to both kaolins, but in the case of kaolin-P, these inflammatory cytokines were significantly elevated. Based on these findings, differences of genotoxic potency may contribute to incorporation rates into immune cells. Furthermore, it is likely that immune cells and epithelial cells might closely interact with each other for the appearance of genotoxocity in vivo. In order to clarify the interaction between epithelial and immune cells, A549 and RAW264 were co-cultured and RAW264 cells only were exposed to kaolins, then subsequently A549 was applied to FCM analysis and comet assay. DNA damage observed in the A549 cells markedly increased in the presence of kaolin-exposed RAW264 cells compared to the single culture.ConclusionFrom these observations, it is suggested that mechanisms of kaolin genotoxicity against epithelial cells are through the activation of macrophage cells. Therefore, it is thought that interactions between epithelial and immune cells would be very important for evaluation of the genotoxicity of fine particulate matter. We also showed here that co-culture models of epithelial and immune cells could be used as suitable models for evaluation of lung genotoxicity of fine particulate matter, including nanomaterials, as in vivo mimicking systems.

Highlights

  • Kaolin is white clay mineral with the chemical composition Al2Si2O5(OH)4, and many varieties of kaolins having different crystal structures are utilized in industrial, cosmetic and medical fields

  • We have previously reported that accumulation of nitrotyrosine was observed in macrophages and alveolar epithelial cells in the lungs of mice intratracheally instilled with kaolin, inflammation would be partly be involved in the appearance of genotoxicity [3]

  • ROS generation was markedly observed in RAW264 cells whereas almost no ROS generation was observed in A549 cells

Read more

Summary

Introduction

Kaolin is white clay mineral with the chemical composition Al2Si2O5(OH), and many varieties of kaolins having different crystal structures are utilized in industrial, cosmetic and medical fields. To verify the genotoxic effects of two kinds of kaolins representing different surface structures (one is smooth, sphereshaped crystals named kaolin-S, and the other is clusters of thin pseudohexagonal plates named kaolin-P), here, we examined the DNA damaging potency with comet assay in in vivo and in vitro. Both kaolins showed DNA damage in the mice of lungs, the DNA damaging potency was much higher for kaolin-P than that for kaolin-S This potent genotoxicity of kaolin-P was supported by the results obtained from analysis of the incorporation rate, ROS production and inflammatory cytokine generation. Possible mechanisms and importance of cell-cell interactions for genotoxicty induced by kaolin are discussed

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.