Abstract

Objectives Our previous study showed poor mechanical durability and nano-sized heterogeneities in cross-linked dentin adhesives cured in the presence of water. To further explore the relationship between nano-scale heterogeneities and the long-term mechanical properties of dentin adhesives, the properties of model dentin adhesives polymerized using hydrophilic photoinitiators were compared with those of adhesives polymerized using hydrophobic camphorquinone-based photoinitiators. Methods The model adhesives consisted of HEMA and bisGMA with a mass ratio of 45/55 and were photopolymerized in the presence of 8.3 mass% water. The photo-polymerization of the model adhesives during irradiation was monitored in situ using a Perkin-Elmer Spectrum One FTIR in the ATR sampling mode. The tensile properties were determined for all samples after dry storage at room temperature, or after aqueous storage in distilled deionized water. Results There was a continuous decline of mechanical properties for the specimens cured in the presence of water during 3 months aqueous storage, especially for the specimens that contained hydrophobic photoinitiators. The multi-component systems containing hydrophilic photoinitiators were shown to produce superior model dental adhesives when these materials are cured in the presence of water. Significance Designing initiator systems to perform in this heterogeneous environment may improve the mechanical performance of dentin adhesives, as the results presented here indicate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call