Abstract

The aim of this study was to compare the treatment effects of laser photobiomodulation (LPBM) therapy and aerobic exercise on the biomechanical properties, tissue morphology and the expression of tendon matrix molecules during early remodeling of Achilles tendon (AT) injury in diabetic rats. Animals were randomly assigned to five groups: injured non diabetic (I, n = 15), injured diabetic (ID, n = 15), injured diabetic plus LPBM (IDL, n = 16), injured diabetic plus aerobic exercise (IDE, n = 16) and injured diabetic plus aerobic exercise and LPBM (IDEAL, n = 17). Type 1 diabetes was induced via a single intravenous injection of Streptozotocin at a dose of 40 mg/kg. A partial tenotomy was performed in the right AT. LPBM was performed with an indium-gallium-aluminum-phosphide 660 nm 10 mW laser device (spot size 0.04 cm2, power density 250 mW/cm2, irradiation duration 16 s, energy 0.16 J, energy density 4 J/cm2) on alternate days for a total of 9 sessions over 3 weeks (total energy 1.44 J), using a stationary contact technique to a single point over the dorsal aspect of the AT. Moderate aerobic exercise was performed on a motorized treadmill (velocity 9 m/min for 60 minutes). At 3 weeks post-injury, biomechanical analyzes as well as assessment of fibroblast number and orientation were performed. Collagen 1 (Col1) and 3 (Col3) and matrix metalloproteinases (MMPs) -3 and 13 protein distributions were studied by immunohistochemistry; while Col1 and Col3 and MMP-2 and 9 gene expression were assessed by quantitative RT-PCR (qRT-PCR). IDEAL exhibited significant increases in several biomechanical parameters in comparison to the other groups. Moreover, IDEAL presented stronger Col1 immunoreactivity when compared to ID, and weaker Col3 immunoreactivity than IDE. Both IDL and IDEAL demonstrated weaker expression of MMP-3 in comparison to I, while IDL presented no expression of MMP-13 when compared to ID. ID, IDL and IDE showed an increased number of fibroblasts in comparison to I, while IDEAL decreased the number of these cells in comparison to ID and IDE. IDL and IDEAL groups exhibited decreased angular dispersion among the fibroblasts when compared to I. The gene expression results showed that IDE demonstrated a downregulation in Col1 mRNA expression in comparison to I and ID. IDEAL demonstrated upregulation of Col1 mRNA expression when compared to IDL or IDE alone and increased MMP-2 expression when compared to IDL and IDE. MMP-9 expression was upregulated in IDEAL when compared to I, IDL and IDE. Our results suggest a beneficial interaction of combining both treatment strategies i.e., aerobic exercise and LPBM, on the biomechanical properties, tissue morphology and the expression of matrix molecules in diabetic tendons.

Highlights

  • Diabetes Mellitus (DM) is a complex metabolic disease characterized by chronic hyperglycemia which is responsible for several long term systemic complications [1]

  • Collagen fiber disorganization and altered expression of key extracellular matrix (ECM) proteins, such as matrix metalloproteinases (MMPs) -2, -3, -9 and -13 [8] were previously reported as possible mechanisms for the impaired tendon healing in DM as they can lead to decreased degradation of matrix proteins and impaired tissue remodeling [9]

  • Hyperglycemia was associated with polyphagia, polydipsia, and polyuria in the diabetic rats, indicating that experimental diabetes was successfully induced

Read more

Summary

Introduction

Diabetes Mellitus (DM) is a complex metabolic disease characterized by chronic hyperglycemia which is responsible for several long term systemic complications [1]. While the pathogenesis of diabetic tendinopathy remains to be fully detailed [6], it is well known that the diabetic tendon exhibits a wide range of cellular, morphological, biomechanical and expressional alterations [1,7]. Among these alterations, collagen fiber disorganization and altered expression of key extracellular matrix (ECM) proteins, such as matrix metalloproteinases (MMPs) -2, -3, -9 and -13 [8] were previously reported as possible mechanisms for the impaired tendon healing in DM as they can lead to decreased degradation of matrix proteins and impaired tissue remodeling [9]. The underlying mechanisms by which LPBM and exercise enhance tendon healing remain to be determined, especially in DM

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.