Abstract

The effects of aging at 773 K on hydrogen embrittlement in Ni–30Cr (wt-%) alloys having two levels of P have been investigated by considering the grain-boundary segregation of impurity atoms and the Ni2 Cr ordered-phase formation. Aging at 773K suppressed intergraular fracture and reduced the susceptibility to hydrogen embrittlement in the low-P alloy. Such behaviour can be explained in terms of the grain-boundary strengthening caused by the segregation of C atoms. During aging at 773 K, the Ni2Cr ordered phase formed and the deformation mode changed from wavy slips to coplanar slip with paired dislocations, and then to coplanar slip with microtwins. In the low-P alloy, this change of deformation mode induced step-like cracks which may have occurred by the separation of either the {111} slip planes or the microtwin interfaces. In the high-P alloy, aging for short times caused C segregation to the grain boundaries which suppressed intergranular fracture. However, aging for longer times induced drastic intergranular hydrogen embrittlement because of the grain-boundary segregation of P atoms, which offset the effect of the boundary strengthening caused by C atoms.MST/177

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.