Abstract

In the large-scale manufacturing and purification of protein therapeutics, multiple chromatography adsorbent lots are often required due to limited absorbent batch sizes or during replacement at the end of the useful column lifetime. Variability in the adsorbent performance from lot to lot should be minimal in order to ensure that consistent product purity and product quality attributes are achieved when a different lot or lot mixture is implemented in the process. Vendors of chromatographic adsorbents will often provide release specifications, which may possess a narrow range of acceptable values. Despite relatively narrow release specifications, the performance of the adsorbent in a given purification process could still vary from lot to lot. In this case, an alternative use test (one that properly captures the lot to lot variability) may be required to determine an acceptable range of variability for a specific process. In this work, we describe the separation of therapeutic protein monomer and aggregate species using hydrophobic interaction chromatography, which is potentially sensitive to adsorbent lot variability. An alternative use test is formulated, which can be used to rapidly screen different adsorbent lots prior to implementation in a large-scale manufacturing process. In addition, the underlying mechanism responsible for the adsorbent lot variability, which was based upon differences in protein adsorption characteristics, was also investigated using both experimental and modeling approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.